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Chapter 1

Introduction

The aim of this thesis is to describe a theoretical model for the generation of entangled
photons inside silicon optic chips. In particular, the structure I am going to study
is composed by two microrings side coupled to two waveguides. Due to interference,
the electric field inside a ring is enhanced and a great amount of energy is stored in
the ring, which leads to non linear effects. Imposing a phase matching condition it
is possible to select which non linear effect is more efficient and, therefore, which one
is significant. Generation of entangled photons is possible by means of Spontaneous
Four Wave Mixing, a third order non-linear effect of silicon. In addition to this, the
main advantage of using two coupled resonators is that it is possibile to change the
phases of the fields in the waveguides between the rings, and I will show how this can
be exploited in order to build a tunable device where we can manipulate the output
state of the generated photons.
In order to describe this process, the first chapter gives a description of the basic
structures, microrings and waveguides and how we can describe their behaviour using
a mathematical formalism. The second chapter is devoted to the explanation of the
physics behind the phenomena and the mathematics which can be used to carry out
the calculation. Finally in the last chapter the model and the results are presented.
The results obtained in this work are valid in general, however the numerical examples
presented are based on a silicon structure.

1.1 Integrated optics

The microelectronics has been widely succesful and changed our daily life and work;
nowadays microelectronics is present almost everywhere. The great success of these
technologies is due to many reasons. Moore’s law predicts that the number of tran-
sistors in a chip keep increasing while their size decreasing. The prediction still holds
today, but we are reaching a saturation point: at the beginning, improvements were
possible by increasing the clock frequencies of the processing units, but now the ap-
proach used is to increase the number of processing units. This kind of improvement
faces several problems: the cores need to communicate with each other, so the problem
is to realise efficient communication with high bandwidth and low power consumption.
Photonics is a platform that can be used to achieve such goal: with light is possible to
realize ultra-high speed switches, it has low power consumption, it doesn’t have elec-

5



CHAPTER 1. INTRODUCTION

tromagnetic noise, it doesn’t have Joule effect and since the wavelenght used is in the
order of Thz, the bandwidth avaiable is much larger then in electronics, moreover it’s
possible to send signals over different wavelength at the same time. Several platforms
have been developed with different media, such as silicon or lithium niobate. Since
the electronics industry is based on silicon, Silicon-on-Insulator (SOI) photonics is a
great platform to build optical chips. Indeed, the technology used for the fabrication of
silicon chips is well studied and understood, it has reached a high level of sophistication
and the industries and the infrastructures already exist. Futhermore silicon photonic
is compatible with CMOS technology used in electronic chips, hence hybrid chips with
electronics and photonics can be realised. Another important feature of silicon is its
transparency at the important Telecom wavelengths (1300-1600 nm), which allows the
fabrication of optic circuits with very low power losses. The aim of silicon photonics is
to follow the philosophy behind microelectronics: small chips composed by few building
blocks that can be used to build different devices changing the topology of the chip,
and to realise these building blocks with as few materials as possible with a standard
established among manifacturers.
From the point of view of quantum mechanics, light is composed by elementary par-
ticles called photons. Photons have quantum properties, hence it is possible to build
quantum devices using the already implemented building blocks for silicon photonics.
Photons can be used to represent quantum bits and due to their low decoherence ef-
fects, they are an attractive approch to quantum information processing. Quantum
technologies can drastically improve some tasks in computation, measurement and
communication , and quantum silicon photonics is a great platform for developing such
technologies on a single chip.

1.2 Waveguides

Figure 1.1: SOI chip layer structure

A silicon optical chip is realised with three different layers as depicted in figure 1.1.
At the bottom we can find the substrate, a silicon layer which provides a base and
a stable structure for the chip; just above it there is a layer made of silicon dioxide
called cladding used to optical isolate the top layer from the substrate and finally at
the top there is another silicon layer called the core. The thickness of the substrate is
in the order of 700µm and the cladding in the order of some µm, while the core has a
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1.2. WAVEGUIDES

Figure 1.2: Light behaviour at media boundary

height in the order of a few hundred nm. The refractive index of silicon is nSi ' 3.5,
in the range of the Telecom wavelengths, while the refractive index of silicon dioxide is
nSiO2 ' 1.54, in the same range; this allows the confinement of light in the core layer
by total internal refraction. Exactly like in optical fibers, when the light, travelling
in the core layer, reaches the boundaries with the cladding or with the air (refractive
index ' 1) is reflected back if the angle of incidence is greater than a critical angle.
The most important component for an optical chip is a waveguide. The light signal
is carried inside this waveguide by confinement of light. Consider the system in figure
1.2, when the light strikes the medium boundary, a part is reflected, while another part
is transmitted. If the angle of incidence θI is less than a critical angle θc, the light is
completly reflected. Indeed, the angle of the refracted light is given by Snell’s law

n1 sin θI = n2 sin θT (1.1)

which can be written as
sin θI =

n1

n2

sin θR (1.2)

if we impose θR to be at least 90◦, we obtain

sin θI =
n1

n2

=⇒ θI = arcsin

(
n1

n2

)
(1.3)

this is the critical angle; it is clear from the equation that the critical angle exists only if
n1/n2 < 1, i.e. n1 > n2. Hence the phenomenon of total internal reflection occurs only
when light is inside a medium with a refractive index greater than the surrounding’s.
This is the case of a SOI device, where the light propagates inside a layer of silicon
sandwiched between a layer of silica and the air, which both have a refractive index
smaller than silicon’s.
The geometrical optic description should be further elaborated for silicon waveguides.
Indeed, the signal in the core layer can be best described with the electromagnetic wave
theory. Inside a waveguide, several modes of propagation are possible, where electric
field profile Em follows the Helmholtz equation [1]:

(∇2
xy + β2

m)Em(x, y) =
ω2

c2
n2Em(x, y) (1.4)
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CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.3: Basic configuration with waveguides and a resonator (a) All Pass Filter (b)
Add Drop Filter

where βm is called the modal propagation costant, and is given by βm = ω
c
neff where

neff is the modal effective index. m is an integer that represents the discrete mode of
propagation.
An important physical consequence can be deduced from this equation: the tangential
components of the electric and of the magnetic field cannot be discontinuous at the
boundary, so the field is not totally inside the waveguide, but a small part can be
found also outside. Assuming that a mode is confined in the waveguide, Maxwell’s
equations impose such boundary conditions on the electric and magnetic fields, the
solution of these equations outside the waveguide cannot transport energy, otherwise
the light would not be confined inside the waveguide. Therefore, the only solution is
to have an exponentially decreasing mode represented by an evanescent wave. This
evanescent wave explains why the effective index is present in the formula of the modal
propagation costant, the wave, which travels inside the waveguide, propagates inside
a medium with fixed refractive index and its tail propagates outside the waveguide
where there is a different refractive index. The effective index accounts for this phe-
nomenon. Evanescent fields are also important when two waveguides are very close to
each other: if light travels inside a waveguide and its evanescent tail reaches the neigh-
bouring waveguide the light can penetrate into its core and there is a transfer of energy.
This allows the coupling of different waveguides or, as we will see later, the coupling
between a waveguide and a resonator. It is also interesting to look at the quantum
description of this effect: a photon is described by a wave function which is a solution
of the Schrödinger equation, in the same mathematical way of Maxwell’s equations,
these impose the continuity of the wavefunction across the medium bondary. If two
waveguides are close enough, the wave function is non zero inside both waveguides, so
a photon have a non-zero probability to pass through the gap and change waveguide,
in quantum mechanics this effect is called quantum tunneling.

1.3 Resonator

A waveguide can be bent and closed onto itself to provide coherent feedback to the
circulating light. This device is called a resonator and it can have different shape, such
as a ring or a racetrack. Due to the size of these devices they are called microresonators.
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1.3. RESONATOR

Figure 1.4: Normalized transfer functions HT
AD (black line) and HD

AD (red line). More-
over some parameters are showed: Free Spectral Range (FSR), the Extinction ratio
(ER) for the Through and for the Drop port, and the resonance FWHM.

For ease of calculation we will treat only microrings with fixed radius. Inside a ring
resonator light interferes constructively if the equation neffL = mλm is satisfied, where
L is the circumference, m is an integer and λm is the light wavelength. A consequence
of constructive interference is that inside the resonator a large amount of energy is
stored and the intesity of the field is enhanced. A strong electric field can cause
non-linear effects. This is a reason for the importance of resonators: with low power
input it is possible to have non-linear effects that usually require a more powerful
source. Ring resonators have many applications: for example they can be used as filters
for specific wavelengths for multiplexing applications, sensing, signal modulation and
active devices for building integrated microlasers.
There are two main ways to create circuits with the two basic blocks just described:
the first one is a waveguide side coupled to a single ring, and this configuration is
called All Pass Filter (APF), while if there are two waveguides coupled to a single
ring, the configuration is called Add-Drop Filter (ADF). In figure 1.3 we can see both
configurations. The coupling is possible by means of the evanescent wave, since the
gap between the waveguide and the ring is very narrow (on the order of ' 100nm).
Coupling can be seen as a quad port beam splitter and the relationship between the
complex amplitudes of waves in input and output can be represented by the following
matrix

M =

(
r ik
ik r

)
(1.5)

where r is the reflection coefficient and k is the transmission coefficient, they satisfy
r2 +k2 = 1. The elements of the matrix can be found by imposing energy conservation
among input and output [9]. Let us focus now on the APF configuration: using the
above matrix we want to find the relation bewteen a and c in order to find the transfer
function of the device (

c
d

)
= M

(
a
b

)
(1.6)
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CHAPTER 1. INTRODUCTION

b and d are connected with the roundtrip phase condition b = e−α2πRe−iβ2πRd ≡
τe−iφ(λ)d, where α is the linear loss coefficient, R the ring radius and β is the res-
onance wavevector β =

2πneff

λ
. Solving the system (1.6) leads to the transfer function

HAP =
c

a
=
τ − reiφ(λ)

rτ − eiφ(λ)
(1.7)

For the ADF configuration the expression of the transfer function can be obtained in a
similar way, but now we need to handle two beam splitters, and the round trip phase
condition is more complicated: f = e−απRe−iβπRd and b = e−απRe−iβπRh, working out
the calculation we get the final result

HT
AD =

c

a
=
k2
√
τeiφ/2

r2τ − eiφ
HD
AD =

g

a
=
r(eiφ − τ)

eiφ − r2τ
(1.8)

the plot of these transfer functions is in figure 1.4, where some quantities are also
depicted. Another important quantity is the quality factor Q = λ

∆λ
, where ∆λ is the

full width at half maximum (FWHM) of the lorentzian resonance at wavelength λ.
Equivalently the quality factor can be seen as the ratio between the stored energy
inside the cavity and the amount lost per cycle. Furthermore, the quality factor is
directly correlated with the enhancement factor EF which is the ratio between the
amplitude of the electric field inside the resonator and the exciting electric field. An
expression for the quality factor can be obtained by taking two successive resonances
and calculating the free spectral range, with a Taylor expansion it can be found [3] for
the APF and ADF configurations

QAPF =
πngλm2πR

√
rτ

(1− rτ)λm
QADF =

πngλm2πRr
√
τ

(1− r2τ)λm
(1.9)

where ng is the group index. From this equation we can see that it is possible to achieve
high quality factor with large rings and low losses. For example with losses in the order
of 3dB

cm
, a radius of 10µm, with an input of 1550 nm and k = 0.03, the quality factor

is approximately 104.

1.4 Coupled resonators

Figure 1.5: Two resonators coupled together
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1.4. COUPLED RESONATORS

A more interesting configuration of microresonators is presented in figure 1.5. The
configuration consists of by two ADF connected in series and it is the configuration
on which this work is based. Between the microresonators there is a heater that by
heating up the waveguide is able to change the phase of the field travelling inside it.
This is a conseguence of the thermo optic effect by which the refractive index depends
on the temperature [3]. The idea is that the field enhancement leads to non-linear
effects, among which there is spontaneous four wave mixing that can be exploited to
generate photon pairs. If the input laser is in A, the generated photons can exit both
from B, both from C or one photon in B and one photon in C, but, by changing the
phase φ1 and φ2, it is possible to decide where the photons exit. A useful quantity
that will be needed in this work is the field enhancement of the rings. The analytic
expression can be found using the formalism developed in the previous section, and
the results are

FE1 =
iei(ϕ1+φ2+φ1)k(eiϕ2 − r2τ2)− ie i

2
(ϕ1+ϕ2)k3(k2 + r2)

√
τ1τ2τL

2

ei(φ1+φ2)(eiϕ1 − r2τ1)(eiϕ2 − r2τ2)− e i
2

(ϕ1+ϕ2)k4
√
τ1τ2τL2

FE2 =
iei(ϕ2+φ1)kr(−eiϕ1 + (r2 + k2)τ1)τL

ei(φ1+φ2)(eiϕ1 − r2τ1)(−eiϕ2 + r2τ2) + e
i
2

(ϕ1+ϕ2)k4
√
τ1τ2τL2

where FE1 refers to the ring on the left and FE2 to the ring on the right, ϕ = βL
and L = 2πR. We stress that the phases φ1 and φ2 refer to the phases induced by the
heaters between the rings, while ϕ1 and ϕ2 are the phases inside the rings.
Figure 1.8 shows field enhancements in the case of φ1 + φ2 = 2mπ around a single
ring resonance wavelength. The condition φ1 + φ2 = 2mπ is important because it
enhances the optical power inside the ring and, as can be seen from the figure, split
the energy equally between the two rings. An equally split energy means that the two
rings are indistinguishable and therefore there is the same probability that the photons
are generated inside one or the other ring. Indeed, if the energy is not split equally, it
means that only one ring works and the configuration is identical to a simple ADF.

Figure 1.6: Field enhancement of an ADF with a single ring
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CHAPTER 1. INTRODUCTION

Figure 1.7: Field enhancements with φ1 + φ2 = 2π, ring 1 refers to the left one and 2
to the right one

Figure 1.8: Field enhancements with φ1 + φ2 = −π, ring 1 refers to the left one and 2
to the right one
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Chapter 2

Physical theory and mathematical
model

2.1 Non linear optics

An electric field inside a medium induces a dipole moment inside the media; the polar-
ization P is defined as the dipole moment per unit volume [1]. The relation between
the polarization and the electric field E is in first approximation linear:

P = ε0χE (2.1)

where ε0 is the permittivity of free space and χ is the eletric susceptibility of the medium
which is in general a second rank tensor in order to account for medium anisotropy. If
the intensity of the electric field is strong enough, the relation between the field and
the polarization is no longer linear and we can expand the equation (2.1) in series. In
general we find

Pi = ε0(
∑
j

χ
(1)
ij Ej +

∑
j,k

x
(2)
ijkEjEk +

∑
j,k,l

χ
(3)
ijklEjEkEl + . . . ) (2.2)

where the χ(i) are tensors of rank i + 1 and represent the i-order susceptibily. This
leads to an entire new class of phenomena that are of great interest in photonics: we
will see later, an electric field with frequency ω1 can excite a new electric field with
different frequency ω2. Silicon is a centrosymmetric crystal; this means that if the
electric field changes sign, the resulting polarization must change sign equally, hence
the even order of susceptibily must vanish, so the first non linear effects of silicon are
those of the third order and are referred to as Kerr nonlinearity. For silicon χ(3) is in
the order of 10−19m2

V 2 for the real part and 10−5m2

V 2 for the imaginary part responsible
for absorption.
In order to study non linear phenomena in silicon we take an electric field made up by
three waves propagating along the z direction

E(z, t) =
3∑
j=1

1

2
(Aj(z)ei(ωjt−kjz) + c.c) (2.3)
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CHAPTER 2. PHYSICAL THEORY AND MATHEMATICAL MODEL

Figure 2.1: Spontaneous Four wave mixing seen as annihilation of two photons and
creation of other two photons

where ki = ωi

c
n. From the Maxwell equations and equation (2.2) it is possible to derive

the Helmholtz equation (
∇2 − n2

c2

∂2

∂t2

)
E = µ0

∂2PNL
∂t2

(2.4)

in which there is now a source term on the right hand side of the equation given by the
non linear polarization PNL = ε0χ

(3)E3. Using the field described above we can write

PNL = ε0χ
(3)

∑
l,j,m=±1,±2,±3

(
1

8
AlAjAle

i(ωl+ωj+ωm)te−i(kl+kj+km)z

)
(2.5)

where ω−j = −ωj and A−j = A∗j . From this equation we can see that new frequen-
cies arise, hence the field in equation (2.4) is a wave that oscillates with these new
frequencies, with different frequencies corresponding to different effects. Here we focus
on Four Wave Mixing terms; for further reference on other terms see [7]. Four Wave
Mixing processes arise from the frequency ωn = ωl − ωj + ωm that also represent the
energy conservation. Furthermore, in the case of Four Wave Mixing, the excited wave
also satisfies the phase-match condition kn = kl − kj + km as can be seen from the
same equation of the energy conserving relation. It is worth to note that every non
linear effects have their own phase matching condition; this can be exploited in order
to decide which effect we want to study in our device. In fact the efficiency of a process
is associated with the phase match parameter [2] ∆k = kl−kj +km−kn; the maximum
efficiency is at ∆k = 0, hence devices can be built in such a way that they have the
maximum efficiency for one effect and low efficiency for the others. Furthermore, if the
medium is non dispersive, the equation ∆k = 0 is equivalent to the energy conservation
relation, since k = n

c
ωk.

This classical description, however, is not suitable for describing photon generation;
indeed we need to develop the quantum theory for this phenomenon. Four Wave Mix-
ing in the quantum mechanical point of view, can be seen as the annihilation of two
photons with frequencies ωn and ωj and the simultaneous creation of two photons with
frequencies ωl and ωk. In this scenario the conservation of energy is seen as the con-
servation of photon energy and the phase match condition is the photon momentum
conservation.
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2.2. QUANTUM OPTICS

The process used for the generation of photon pairs has ωj = ωn ≡ ωp and it is called
non degenerate four wave mixing. The wave with ωp is called the pump wave and
ωl ≡ ωs and ωm ≡ ωi are respectivly the signal and idler with the convention that
ωs > ωi. In this case energy conservation can be written as

2ωp = ωs + ωi (2.6)

In the classical derivation the signal stimulates the process and is necessary for the
generation of the idler [2]. The classical process, which obeys this restriction, is called
Stimulated Four Wave Mixing. In the quantum description the process becomes spon-
taneous, i.e. only the pump field is required for generating the signal and the idler;
this process is referred as Spontaneous Four Wave Mixing. The quantum explanation
is that the vacuum fluctuation of the electric field provides the necessary stimulus for
the process. Indeed, in quantum electrodynamics [5], the variance of the electric field
operator evaluated on the vacuum is finite, even if the mean value of the field is zero.
The theory of non linear optics has been discussed here using as the principal field
the electric field E; however, for this work it is more convenient to take the displace-
ment field D = ε0E + P as our fundamental field, this is because in a medium D is
divergenceless. The polarization can be expressed as a function of D as

P i = Γij1 D
j + Γijk2 DjDk + Γijkl3 DjDkDl + . . . (2.7)

where the summation over repeated indexes is implied. Comparing this equation with
(2.2) it is possible to find the relation between the Γ’s and the χ’s, the relation we are
more interested in is [6]

Γijkl3 =
χ

(3)
ijk

ε0n8
(2.8)

in order to include material dispersion, given the frequency involved, the natural choice
is to take

Γijkl3 =
χ

(3)
ijk

ε0n2(ωl)n2(ωj)n2(ωm)n2(ωn)
(2.9)

2.2 Quantum optics

Since Spontaneous Four Wave Mixing is a quantum phenomenon, a quantum descrip-
tion of light is needed. Standard arguments [5] leads to the quantization of the electric
field, and to the introduction to a light particle: the photon. From a mathematical
point of view, the quantization of the electric field is identical to n harmonic oscilla-
tor, thus a state with n photons can be writtten with Dirac’s notation as |n〉. The
displacement field becomes an operator

D(r) =

√
~ωk

2
akDk(r) +

√
~ωk

2
a†kD

∗
k(r) (2.10)

where ak is the annihilation operator of a single photon with wavevector k, while
its adjoint a†k is a creation operator and Dk(r) is the normalized classical field with
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CHAPTER 2. PHYSICAL THEORY AND MATHEMATICAL MODEL

wavevector k. In this framework the linear Hamiltonian can be written as

HL =

∫
dk~ωka†kak (2.11)

neglecting the zero point energy.

The aim now is to find a correct quantum description for the coherent state of a
laser. The photon state number |n〉 cannot have the correct classical limit because the
expectation value of the electric field on this state vanishes no matter how large is the
value of n. A common way to introduce a coherent state is to find the eigenstates of
the annihilation operator [4]:

ak |α〉 = α |α〉 (2.12)

where α can be a complex number. We can express this state as a sum of the number
states |n〉, since they form a complete set:

|α〉 =
+∞∑
n=0

Cn |n〉 (2.13)

equation (2.12) becomes

ak

+∞∑
n=0

Cn |n〉 =
+∞∑
n=0

Cn
√
n |n− 1〉 = α

+∞∑
n=0

Cn |n〉 (2.14)

the coefficients of |n〉 leads to

Cn =
α√
n
Cn−1 =

α2√
n(n− 1)

= · · · = αn√
n!
C0 (2.15)

using the fact that the state must be normalized 〈α |α〉 = 1 it is possible to determine
C0 and, in conclusion, the coherent state can be written as

|α〉 = e−
1
2
|α|2

+∞∑
n=0

αn√
n!
|n〉 (2.16)

to find a physical meaning of α we can evaluate the expectation value of the photon
number operator n̂ = a†kak:

〈α|n̂|α〉 = |α|2 (2.17)

hence |α|2 is the average photon number of the field. The coherent states |α〉 are used
to represent a classical state, for several reasons:

(i) the expectation value of the electric field is a classical field

(ii) the fluctuations of the electric field are the same as for the vacuum

(iii) the states become well localized in phase with increasing photon number
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2.3. ASYMPTOTIC FIELD TREATMENT

an equivalent way to obtain a coherent state |α〉 is to use the displacement operator
defined as

D̂(α) = eαa
†
k−H.c (2.18)

this operator applied on the vacuum generates exactly |α〉: indeed, using the Baker-
Campbell-Hausdorff formula, the exponential can be written as:

D̂(α) = e−
1
2
|α|2eαa

†
ke−α

∗ak (2.19)

when it acts on the vacuum the exponential with the annihilation operators does noth-
ing, so the second exponential can be expanded in a Taylor series:

D̂(α) |vac〉 = e−
1
2
|α|2

+∞∑
n=0

(αa†k)
n

n!
|vac〉 = e−

1
2
|α|2

+∞∑
n=0

αn√
n!
|n〉 (2.20)

exactly what we found in equation (2.16).
This treatment only describes states where all photons have the same wavevector k,
but it is simple to generalize the displacement operator in order to generate state with
photons of different wavevectors. We can write the displacement operator as

D̂(α) = eαA
†
P−H.c (2.21)

where A†P =
∫
dkφP (k)a†k where |φ(k)|2 is the probability of finding a photon with

wavevector k and φP is normalized according to
∫
dk|φP (k)|2 = 1.

2.3 Asymptotic field treatment

Most of this section is developed in [8], here I summarize the key points needed for the
next chapter and limit the treatment to a single mode field.
The idea behind this theory is to provide an easier way to study complex stuctures
such as the one sketched in figure 2.2. The strategy is borrowed from the theory of
scattering in quantum mechanics, an asymptotic-in and an asymptotic-out state are
introduced corresponding to an incident wave packet at t = −∞ and an outgoing
wavepacket at t = +∞. The relation between these two states constitutes a solution
of the scattering problem itself. Let us consider the general structure in figure 2.2, the
first assumption is that the incoming energy can reach the interaction region, where the
non linear effects arise, only through the channels. The coordinates of the channels are
labelled as rn = (xn, yn, zn) where n identifies the channel, the zn-axis points toward
the interaction region and the origin zn = 0 is near the center of the interaction region.
The starting point is the introduction of the mode field Dn,k(rn) for every channel,
hence the total field in the set of n channels is:

D(r, t) =
∑
n

∫ +∞

−∞
dkγn,ke

−iωn,ktDn,k(r) + c.c (2.22)

clearly Dn,−k is not indipendent from Dn,k and the relation can be fixed by taking

Dn,−k = D∗n,k (2.23)
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CHAPTER 2. PHYSICAL THEORY AND MATHEMATICAL MODEL

Figure 2.2: General structure of interest, the channels can be of different types and
non linearities are confined in the interaction region

Now we look for solutions of Maxwell’s equations for the structure that have fre-
quency ωn,k with positive k and have the mode field of the form

Dasy−in
n,k = Dn,k(rn) + Dout

n,k (2.24)

where far from the interaction region Dout
n,k represent an outgoing wave in each channel,

that is

Dasy−in
n,k ∼ Dn,k(rn) +

∑
n′

∫ +∞

0

dk′T outn,n′(k, k
′)Dn′,−k′(rn′) (2.25)

where Dasy−in
n,k is called asymptotic-in mode field and far from the interaction region

corresponds to a wave incoming in channel n and outgoing waves in every other channel.
Similarly asymptotic-out mode field is introduced as a full solution of Maxwell equation
with positive k and of the form

Dasy−out
n,k = Dn,−k(rn) + Din

n,k (2.26)

where Din
n,k far from the interaction region consist of incoming waves in each channel,

i.e.

Dasy−out
n,k ∼ Dn,−k(rn) +

∑
n′

∫ +∞

0

dk′T inn,n′(k, k
′)Dn′,k′(rn′) (2.27)

Just like in (2.23) asymptotic-out field and asymptotic-in field are not independent,
but comparing (2.25) and (2.27) we find

Dasy−out
n,k (r) = [Dasy−in

n,k (r)]∗ (2.28)

The final step is to quantize the electric field

D(r) =
∑
n

∫ +∞

−∞
dk

√
~ωn,k

2
cn,kDn,k(r) + H.c (2.29)

18



2.4. BACKWARD HEISENBERG PICTURE APPROACH

the operators cn,k and their adjoint c†n,k satisfy the canonical commutation

[cn,k, cn′,k′ ] = 0 [cn,k, c
†
n′,k′ ] = δnn′δ(k − k′) (2.30)

We can write the field operator as a superposition of asymptotic-in fields

D(r) =
∑
n

∫ +∞

0

dk

√
~ωn,k

2
an,kD

asy−in
n,k (r) + H.c (2.31)

where again the operators an,k satisfy

[an,k, an′,k′ ] = 0 [an,k, a
†
n′,k′ ] = δnn′δ(k − k′) (2.32)

or we can also write the field operator as a superposition of asymptotic-out fields

D(r) =
∑
n

∫ +∞

0

dk

√
~ωn,k

2
bn,kD

asy−out
n,k (r) + H.c (2.33)

where again

[bn,k, bn′,k′ ] = 0 [bn,k, b
†
n′,k′ ] = δnn′δ(k − k′) (2.34)

The utility of this approch is that the linear Hamiltonian can be written with the state
of the whole structure, not only the state of rings and waveguides, hence the linear
Hamiltonian is diagonal. The full Hamiltonian is therefore the sum of a diagonal term
(the linear one) and a non diagonal term (non linear term).

2.4 Backward Heisenberg picture approach

Assuming the knowledge of the Hamiltonian of the system, this section is devoted to
the formalism used to solve the scattering problem subject to the Hamiltonian of the
form H = HL + HNL where HL is the linear Hamiltonian and HNL is the non linear
part. Instead of working in the Schrödinger picture it is easier to work in the Heisenberg
picture. We want to study what happens to an initial state |ψ(t0)〉, t0 � 0 incident on
an interaction region with nonlinearities and find the final state |ψ(t1)〉, t1 � 0. This
means that the results are valid only if the input and the output are taken far from
the structure, that is at a great distance compared to the wavelength.
The dynamics is given by the full Hamiltonian H

|ψ(t1)〉 = e−
i
~H(t1−t0) |ψ(t0)〉 (2.35)

Let us make the assumption that the non linear interactions happen at t = 0 and we
take t0 → −∞ and t1 → −∞ such that the initial and final states are far from the
interaction region. We can define an asymptotic-in state |ψin〉 as the state at t = 0 to
which |ψ(t0)〉 would evolve if the evolution occured only with HL, that is

|ψin〉 = e−
i
~HL(0−t0) |ψ(t0)〉 = e

i
~HLt0 |ψ(t0)〉 (2.36)
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and similarly we can define the asymptotic-out state |ψout〉 as the state at t = 0 that
would evolve into |ψ(t1)〉 if the evolution were dictated by HL, that is

|ψ(t1)〉 = e−
i
~HLt1 |ψout〉 (2.37)

using equation (2.35) and (2.36) in the last equation we can find the relation between
the asymptotic-in state and the asyptotic-out state

e−
i
~H(t1−t0) |ψ(t0)〉 = e−

i
~HLt1 |ψout〉

e−
i
~H(t1−t0)e−

i
~HLt0 |ψin〉 = e−

i
~HLt1 |ψout〉

(2.38)

and finally
|ψout〉 = U(t1, t0) |ψin〉 (2.39)

where
U(t′, t) = e

i
~HLt

′
e−

i
~H(t′−t)e−

i
~HLt (2.40)

the advantage of this approach is that the non-linear scattering problem is contained
only in the transition |ψin〉 → |ψout〉 and it is easy to calculate the asymptotic states
since they are a linear evolution of the initial and final states. Hence if we start
from |ψ(t0)〉 we can easly calculate |ψin〉, then we solve the non-linear problem in the
transition |ψin〉 → |ψout〉 and finally we can easily determine the final state |ψ(t1)〉. For
this reason we will now study the dynamics of U(t1, t0). Differentiating equation (2.40)
we obtain

−i~∂U(t′, t)

∂t
= U(t′, t)V (t) (2.41)

where V (t) has been defined as

V (t) ≡ e
i
~HLtHNLe

− i
~HLt ≡ U †LHNLUL (2.42)

let us consider an asymptotic-in state of the form

|ψin〉 = eO |vac〉 (2.43)

where O is a Schrödinger operator. With this definition we have in mind the displace-
ment operator defined in (2.18) that generates the coherent state of the laser. From
equation (2.39) we can write

|ψout〉 = U(t1, t0)eO |vac〉 (2.44)

using the fact that both H and HL have at least one lowering operator on the right we
can say H |vac〉 = HL |vac〉 = 0, therefore also

U(t1, t0) |vac〉 = U †(t1, t0) |vac〉 = |vac〉 (2.45)

this property allows us to write

|ψout〉 = U(t1, t0)eOU †(t1, t0) |vac〉 = eU(t1,t0)OU†(t1,t0) |vac〉 ≡ eO(t0) |vac〉 (2.46)

20



2.4. BACKWARD HEISENBERG PICTURE APPROACH

where
O(t) = U(t1, t)OU

†(t1, t) (2.47)

and it satisfies O(t1) = O. Differentiating (2.47) and using (2.41) we find

i~
dO(t)

dt
= [O(t), V̂ (t)] (2.48)

where
V̂ (t) ≡ U(t1, t)V (t)U †(t1, t) (2.49)

In conclusion the approach that can be taken is to first find V (t) and V̂ (t) for the
system and then integrate equation (2.48) from t = t1 back to t = t0 subject to the
final condition O(t1) = O; after that we can determine |ψout〉 using (2.44).
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Chapter 3

Photons generation in coupled
resonators

Figure 3.1: Coupled resonators, Spontaneous Four Wave Mixing happens only inside
the rings, there are three channels labelled as A,B, and C

In this last chapter we study the generation of entangled photons via Spontaneous
Four Wave Mixing in the structure of figure 3.1. As can be seen from figure 3.1, the
structure is composed by two ADF in series, the channel are labelled with the letters
A, B, C and D, in this work we assume that the input is in channel A and the output
can be in either in B or in C. When numerical examples are presented, they will refer
to the SOI structures described in chapter 1. The work starts by writing the non-linear
Hamiltonian in terms of the asymptotic states developed in section 2.3, then we solve
the dynamics of the photons state using the backward Heisenberg approach developed
in section 2.4 and finally we study the results.
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CHAPTER 3. PHOTONS GENERATION IN COUPLED RESONATORS

3.1 Asymptotic fields

(a) Asymptotic in field for channel A (b) Asymptotic out field for channel B

Figure 3.2: Asymptotic fields for the coupled resonators, the ring on the left is identified
as 1, while the ring on the right as 2

We take as input state a coherent state in channel A, so we can write it as |ψin〉 =

eαA
†
p−H.c |vac〉 where A†p =

∫
dkφP (k)a†k. The non linear Hamiltonian is [10]

HNL = − 1

3ε0

∫
Γijkl3 (r)DiDjDkDl dr (3.1)

where summation over repeated indexes is implied. Since the asymptotic states are
a complete basis we can expand D either on the asympotic-out states, or on the
asymptotic-in, we can choose to expand two fields of (3.1) in terms of the asymptotic-in
and the other two in terms of the asympotic-out. Keeping only the Spontaneous Four
Wave Mixing terms we arrive at:

HNL = −
∫
dk1dk2dk3dk4Sbb(k1, k2, k3, k4)ak1ak2b

†
b,k3
b†b,k4

− 2

∫
dk1dk2dk3dk4Sbc(k1, k2, k3, k4)ak1ak2b

†
b,k3
b†c,k4

−
∫
dk1dk2dk3dk4Scc(k1, k2, k3, k4)ak1ak2b

†
c,k3
b†c,k4 + H.c. (3.2)

where ak is the annihilation operator associated with channel A, bb,k is for channel B
and bc,k refers to channel C and we defined the following quantity

Sxy(k1, k2, k3, k4) =
3

2ε0

√
(~ωk1)(~ωk2)(~ωk3)(~ωk4)

16
·∫

drΓijkl3 Di,asy−in
a,k1

(r)Dj,asy−in
a,k2

(r)
[
Dk,asy−out
x,k3

(r)
]∗ [

Dl,asy−out
y,k4

(r)
]∗

(3.3)

we derive now the explicit form of Sbb and in analogy also for Sbc and Scc. In section
2.3 we stated that the asympotic-in field associated with channel A corresponds to a
wave incoming in channel A and outgoing waves in all other channels, and similarly
the asymptotic-out field of channel B consists of an outgoing wave in channel B and
incoming waves in the other channels. These asymptotic fields are depicted in figure 3.2.
The integral of Sbb is performed in general over all space, but outside the waveguides
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and resonators the field is zero; furthermore, since the field inside the ring is enhanced
with respect to the field in the waveguide, we can neglect the contribution of the field
in the waveguides. Therefore the integration can be performed only over the rings.
With this assumption we can write the asymptotic fields as

D
asy−in (rings)
a,k = FE1a(ω)d1

k1
(r⊥)eik1z + FE2a(ω)d2

k2
(r⊥)eik2z (3.4)

where z is the coordinate in the counterclockwise direction along the rings circumference
and r⊥ are the coordinates perpendicular to z. FE1a is the field enhancement of the
first ring when the input wave is in channel A, while obviously FE2a refers to the
second ring, and d1

k1
(r⊥) is the linear mode profile. Similarly the asymptotic-out field

associated with channel B can be written as

D
asy−out (rings)
b,k = FE1b(ω)d1

k1
(r⊥)eik1z + FE2b(ω)d2

k2
(r⊥)eik2z (3.5)

using the last two equations in (3.3) leads to a lot of terms, each associated with a
specific physical interpretation. In particular every terms correspond to a possible path
for the photons that are scattered in the channel B: for example, the annihilated pump
photons can be both inside the first ring, or both in the second one, or one in the first
ring and one in the second one. The same argument holds for the created photons, that
can be created both inside the first ring, both inside the second or one in each ring. The
combination of these paths are represented by all terms in Sbb; however, each of these
terms are proportional to the field d1

k1
(r⊥) and d2

k2
(r⊥) that are non-zero only inside

the ring, therefore a term that contains a factor d1
k1

(r⊥)d2
k2

(r⊥) is zero everywhere,
because in the first ring the second factor is zero and in the second ring the first factor
is zero. The only term that survive the integration are those who have all factors
equal to d1

k1
(r⊥) or d2

k2
(r⊥), that is only the path where the two pump photons are

annihilated in the same ring where the signal and indler photons are created. Therefore
we can write Sbb as

Sbb =
3

2ε0

√
(~ωk1)(~ωk2)(~ωk3)(~ωk4)

16
·(∫

drΓijkl3 FE1a(ω1)FE1a(ω2)FE∗1b(ω3)FE∗1b(ω4)d1,i
k1

(r⊥)d1,j
k2

(r⊥)d1,k
k3

(r⊥)d1,l
k4

(r⊥)ei∆kz+

∫
drΓijkl3 FE2a(ω1)FE2a(ω2)FE∗2b(ω3)FE∗2b(ω4)d2,i

k1
(r⊥)d2,j

k2
(r⊥)d2,k

k3
(r⊥)d2,l

k4
(r⊥)ei∆kz

)
(3.6)

where ∆k = k1 + k2 − k3 − k4. The integration in z can be done easly∫ L

0

ei∆kzdz =
1

i∆k
(ei∆kL − 1) =

ei∆kL/2

i∆k
(ei∆kL/2 − e−i∆kL/2) =

2

∆k
ei∆kL/2 sin

(
∆k

L

2

)
(3.7)

which can be written as L
π
ei∆kL/2sinc

(
∆k L

2π

)
. If we define the following

γ1 =
3

2ε0

∫
dr⊥Γijkl3 d1,i

k1
(r⊥)d1,j

k2
(r⊥)d1,k

k3
(r⊥)d1,l

k4
(r⊥) (3.8)
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and the related γ2, notice that in the case d1
k = d2

k, then γ1 = γ2 ≡ γNL. The expression
for Sbb is finally:

Sbb =
L

π
ei∆kL/2sinc

(
∆k

L

2π

)√
(~ωk1)(~ωk2)(~ωk3)(~ωk4)

16
·(

γ1FE1a(ω1)FE1a(ω2)FE∗1b(ω3)FE∗1b(ω4)+γ2FE2a(ω1)FE2a(ω2)FE∗2b(ω3)FE∗2b(ω4)

)
(3.9)

3.2 Output states

With this expression we can switch to the Heisenberg picture and we can define

V (t) = U †LHNLUL (3.10)

since the operator UL satisfies the unitary relation ULU
†
L = U †LUL = 1 we can insert

U †LUL between every annhilation and creation operators and define the time dependent
operator, for example ak(t) ≡ U †LakUL. These operators satisfy the Heisenberg equation

dak
dt

=
1

i~
[ak, HL] (3.11)

which we can solve for every operator. For example for ak the commutator with the
linear Hamiltonian is:

[ak, HL] =

∫
dk′~ωk′aka†k′ak′ −

∫
dk′~ωk′a†k′ak′ak (3.12)

we know that [ak, a
†
k′ ] = δ(k− k′) =⇒ aka

†
k′ = δ(k− k′) + a†k′ak; substituting this into

the first term we arrive at

[ak, HL] =

∫
dk′~ωk′akδ(k − k′) = ~ωkak (3.13)

so the Heisenberg equation can be written as

dak
dt

= −iωkak (3.14)

which has the trivial solution ak(t) = ak(0)e−iωkt, since ak(0) = ak we can write (3.10)

V (t) = Vbb + 2Vbc + Vcc (3.15)

where

Vxy = −
∫
dk1dk2dk3dk4Sxy(k1, k2, k3, k4; t)ak1ak2b

†
x,k3

b†y,k4 + H.c (3.16)

and Sxy(k1, k2, k3, k4; t) = Sxy(k1, k2, k3, k4)e−i(ωk1+ωk2−ωk3−ωk4)t. In a similar way it is

possible to construct V̂ (t)

V̂ (t) = U(t1, t)V (t)U †(t1, t) = V̂bb(t) + 2V̂bc(t) + V̂cc(t) (3.17)
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where

V̂xy(t) = −
∫
dk1dk2dk3dk4Sxy(k1, k2, k3, k4; t)ak1(t)ak2(t)b

†
x,k3

(t)b
†
y,k4

(t) + H.c (3.18)

now we have all the elements necessary for integrating the equation (2.47), we need to
solve it for the operator a†k(t)

−i~da
†
k(t)

dt
= [a†k, V̂ (t)] = [a†k, V̂bb(t)] + [a†k, 2V̂bc(t)] + [a†k, V̂cc(t)] (3.19)

we must work out the three commutators, they are all similar, so we show only one:

[a†k, V̂bb(t)] = −
∫
dk1dk2dk3dk4Sbb(k1, k2, k3, k4; t)a†k(t)ak1(t)ak2(t)b

†
b,k3

(t)b
†
b,k4

(t)

−
∫
dk1dk2dk3dk4Sbb(k1, k2, k3, k4; t)a†k(t)a

†
k1

(t)a†k2(t)bb,k3(t)bb,k4(t)

+

∫
dk1dk2dk3dk4Sbb(k1, k2, k3, k4; t)ak1(t)ak2(t)b

†
b,k3

(t)b
†
b,k4

(t)a†k(t)

+

∫
dk1dk2dk3dk4Sbb(k1, k2, k3, k4; t)a†k(t)a

†
k1

(t)a†k2(t)bb,k3(t)bb,k4a
†
k(t) (3.20)

the second and the fourth term are identical, therefore they can be eliminated, for the
first one we can use (2.32), in the end we get

[a†k, V̂bb(t)] = 2

∫
dk1dk2dk3Sbb(k1, k2, k3, k, t)ak1(t)b

†
b,k2

(t)b
†
b,k3

(t) (3.21)

the zeroth-order solution of (3.19) is a†k(t) = a†k(t1) = a†k, so, the first order solution is

a†k(t) = a†k +
2

i~

∫
dk1dk2dk3

∫ t

t1

Sbb(k1, k2, k3, k, t)ak1b
†
b,k2
b†b,k3

+
4

i~

∫
dk1dk2dk3

∫ t

t1

Sbc(k1, k2, k3, k, t)ak1b
†
b,k2
b†c,k3

+
2

i~

∫
dk1dk2dk3

∫ t

t1

Scc(k1, k2, k3, k, t)ak1b
†
c,k2
b†c,k3 (3.22)

with this expression we can write the output state as

|ψout〉 = eαA
†
P (t0)−H.c (3.23)

where A
†
P (t0) =

∫
dkφP (k)a†k(t0). Now we take t0 → −∞ and t1 → +∞ and we

integrate in time using 1
2π

∫
dteiωt = δ(ω), so we can write, for example, the second

term of (3.22) as

2i2π

~

∫
dk1dk2dk3Sbb(k1, k2, k3, k)δ(ωk + ωk1 − ωk2 − ωk3)ak1b

†
b,k2
b†b,k3 (3.24)
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we can use now the Baker-Campbell-Hausdorff formula to expand |ψout〉, the formula

states eA+B = eAe−
1
2

[A,B]eB, we take

A = α

∫
dkφP (k)a†k − H.c (3.25)

B =
2i2π

~

∫
dkdk1dk2dk3φP (k)Sbb(k1, k2, k3, k)δ(ωk+ωk1−ωk2−ωk3)ak1b

†
b,k2
b†b,k3−H.c+. . .

(3.26)
plus the other terms related to bc and cc, we need to work out the commutator, again
using (2.32), we obtain

−1

2
[A,B] =

2πiα2

~

∫
dkdk1dk2dk3φP (k)φP (k1)Sbb(k1, k2, k3, k)δ(ωk+ωk1−ωk2−ωk3)b†b,k2b

†
b,k3

− H.c + . . . (3.27)

where we neglected all terms which do not contain two photon creation operators and
the dots refer to bc and cc. We can notice that eB |vac〉 = |vac〉, so we can write the
final state as

|ψout〉 = eαA
†
P +βbbC

†
II bb+2βbcC

†
II bc+βccC

†
II cc−H.c |vac〉 (3.28)

where

C†II xy =
1√
2

∫
dk1dk2φxy(k1, k2)b†x,k1b

†
y,k2

(3.29)

and φxy(k1, k2) is the biphoton wave function

φxy(k1, k2) =
2πi
√

2

~
α2

βxy

∫
dkdk3φP (k)φP (k1)Sxy(k1, k2, k3, k)δ(ωk + ωk1 − ωk2 − ωk3)

(3.30)
βxy is chosen such that ∫

dk1dk2|φxy(k1, k2)|2 = 1 (3.31)

is properly normalized. Note that for |βxy| � 1 the state of generated photons can be
written as

|ψgen〉 ' |vac〉+ βbb |bb〉+ 2βbc |bc〉+ βcc |cc〉 (3.32)

where |xy〉 = C†II xy |vac〉 and hence |βxy|2 represent the probability of a pair production
in channel x and y. Moreover |βbb|2 + |βbc|2 + |βcc|2 is the probability that a pair is
generated. The physical interpretation of the factor 2 before the state |bc〉 can be easily
found: indeed, the state |bc〉 represents the state where one photon exits from channel
B and one photon exits from channel C. Since the photons are indistinguishable, if we
exchange the photon from channel B with the photon in channel C the state does not
change.

3.3 Output probabilities

Besides the final output state, which shows us that it is possible to generate photon
pairs inside the resonators, we are more interested in the probability that the photon
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pairs have to exit in a specific channel. We study here the probability of the photon
pairs to exit from channel B, the other probabilities can be found in the exact same
way. We labelled this state as |bb〉 and his probability as |βbb|2, in order to find |βbb|2
we need to normalize the biphoton wavefunction∫

dk1dk2|φbb(k1, k2)|2 = 1 (3.33)

it is more convenient to work with the frequency ω instead of k. If the pump wave
φ(k)P is peaked for some k0 > 0 the integrals over k are restricted from 0 to infinity.
With this assumption, there is a unique correspondence between wavenumber and
frequencies k(ω). It is easy to verify that in order to maintain the normalization
of the biphoton wavefunction and the commutator relation between the creation and
annihilation operators the substitutions that have to be made are

b̃ω =

√
dk(ω)

dω
bk(ω) φ̃P (ω) =

√
dk(ω)

dω
φP (k(ω))

φ̃bb(ω1, ω2) =

√√√√dk(ω)

dω

∣∣∣∣∣
ω1

√√√√dk(ω)

dω

∣∣∣∣∣
ω2

φbb(k(ω1), k(ω2)) (3.34)

with this substitution the normalization condition can be written as∫
|φ̃bb(ω1, ω2)|2dω2dω2 =

∫
|φbb(ω1, ω2)|2dk(ω)

dω

∣∣∣∣∣
ω1

dk(ω)

dω

∣∣∣∣∣
ω2

dω1dω2 = 1 (3.35)

and using equation (3.30)

8π2|α|4

~2|βbb|2

∫
φP (ω)φP (ω3)φ∗P (ω′)φ∗P (ω′3)Sbb(ω1, ω2, ω3, ω)S∗bb(ω1, ω2, ω

′
3, ω

′)δ(ω1+ω2−ω3−ω)

δ(ω1+ω2−ω′3−ω′)
dk(ω)

dω

∣∣∣∣∣
ω1

dk(ω)

dω

∣∣∣∣∣
ω2

dk(ω)

dω

∣∣∣∣∣
ω

dk(ω)

dω

∣∣∣∣∣
ω3

dk(ω)

dω

∣∣∣∣∣
ω′

dk(ω)

dω

∣∣∣∣∣
ω′3

dωdω′dω1dω2dω3dω
′
3 = 1

(3.36)

due to the delta’s, we can integrate in ω3 and ω′3 easly. Hence the expression for |βbb|2
is

|βbb|2 =
8π2|α|4

~2

∫
dωdω′dω1dω2φP (ω)φP (ω1 + ω2 − ω)φ∗P (ω′)φ∗P (ω1 + ω2 − ω′)·

Sbb(ω1, ω2, ω1 + ω2 − ω, ω)S∗bb(ω1, ω2, ω1 + ω2 − ω′, ω′)
dk(ω)

dω

∣∣∣∣∣
ω1

dk(ω)

dω

∣∣∣∣∣
ω2

dk(ω)

dω
·∣∣∣∣∣

ω

dk(ω)

dω

∣∣∣∣∣
ω1+ω2−ω

dk(ω)

dω

∣∣∣∣∣
ω′

dk(ω)

dω

∣∣∣∣∣
ω1+ω2−ω′

(3.37)

which can be written in a more compact form as

|βbb|2 = K

∫
dk(ω)

dω

∣∣∣∣∣
ω1

dk(ω)

dω

∣∣∣∣∣
ω2

Jbb(ω1, ω2)dω1dω2 (3.38)
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where K = 8π2|α|4
~2 and

Jbb(ω1, ω2) =

∣∣∣∣∣
∫
dωφP (ω)φP (ω1 + ω2 − ω))Sbb(ω1, ω2, ω1 + ω2 − ω, ω)

√
dk(ω)

dω

∣∣∣∣∣
ω

√
dk(ω)

dω

∣∣∣∣∣
ω1+ω2−ω

∣∣∣∣∣
2

(3.39)
using (3.9) in this equation and the fact that in a medium the dispersion relation is
dk/ω = 1/vg(ω) where vg is the group velocity, the expression for Jbb can be written as

Jbb(ω1, ω2) =

∣∣∣∣∣Lπ ei∆kL/2sinc

(
∆k

L

2π

)√
~4ω4

P

16
γNL∫

dω
1√

vg(ω)vg(ω1 + ω2 − ω)
φP (ω)φP (ω1 + ω2 − ω)

(
FE1a(ω)FE1a(ω1+ω2−ω)FE∗1b(ω1)FE∗1b(ω2)+FE2a(ω)FE2a(ω1+ω2−ω)FE∗2b(ω1)FE∗2b(ω2)

)∣∣∣∣∣
2

(3.40)

To work out Jbb we need to choose the frequencies pump distribution φP (ω), having in
mind a continuous wave we can take as waveform a pulse of width ∆t that in frequencies
has a sinc shape; then it is possible to take the limit ∆t→ +∞ and get the continuos
wave

φP (ω) = sinc

[
(ω − ωp)

∆t

2π

]√
∆t

2π
(3.41)

since the linewidth is (ω − ωP ) = π
∆t

, for ∆t → +∞ we can set FE1a(ω) ' FE1a(ωP )
with a good approximation. Hence Jbb becomes

Jbb(ω1, ω2) =

∣∣∣∣∣LγNL
√

~4ω4
P

4πvg(ωP )
ei∆kL/2sinc

(
∆k

L

2π

)
(
FE1a(ω)FE1a(ωP )FE∗1b(ω1)FE∗1b(ω2) + FE2a(ω)FE2a(ωP )FE∗2b(ω1)FE∗2b(ω2)

)
∫
dω

∆t

2π
sinc

[
(ω − ωp)

∆t

2π

]
sinc

[
(ω1 + ω2 − ω − ωp)

∆t

2π

] ∣∣∣∣∣
2

(3.42)

which can be written in a more compact form as

Jbb(ω1, ω2) =

∣∣∣∣∣LγNL
√
~4ω4

P

4πvg(ωP )
I(ω1, ω2)

∫
dω

∆t

2π
sinc

[
(ω − ωp)

∆t

2π

]
sinc

[
(ω1 + ω2 − ω − ωp)

∆t

2π

] ∣∣∣∣∣
2

(3.43)

where

I(ω1, ω2) = ei∆kL/2sinc

(
∆k

L

2π

)
(
FE1a(ω)FE1a(ωP )FE∗1b(ω1)FE∗1b(ω2)+

FE2a(ω)FE2a(ωP )FE∗2b(ω1)FE∗2b(ω2)
)

(3.44)
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the last integral can be approximated, the second sinc function is non zero only when
ω1 + ω2 − ω − ωP ' 0 =⇒ ω1 + ω2 = ω + ωP ' 2ωP , with this approximation the
integration can be done more easly and the result is

Jbb(ω1, ω2) =

∣∣∣∣∣LγNL
√
~4ω4

P

4πvg(ωP )
I(ω1, ω2)

∣∣∣∣∣
2

(3.45)

In conclusion, for the probability we obtain

|βbb|2 =
(LγNL)2~2ω4

P |α|4

2vg(ωP )4

∫
|I(ω1, ω2)|2dω1dω2 (3.46)

In figure 3.3 the (non-normalized) probabilities |βbb|2 and |βcc|2 are shown. It must be
notice that in equation (3.46) the factor I(ω1, ω2) is a function of the phases φ1, φ2, this
because the field enhancements are a function of φ1, φ2 and recalling equation (3.44),
I(ω1, ω2) is a function of the field enhancements. Thus the probabilities depend on the
phases φ1, φ2 and by changing them the probabilities change as well. As we can see
from figure 3.3 these probabilities are not negligible on the diagonal φ1+φ2 = 2π, which
is something we studied in section 1.4; only with this condition the two resonators are
indistinguishable which is a necessary condition for the system to work. In the diagonal
of |bb〉 state we encounter a maximum when φ1 = mπ

2
and φ2 = 2π −mπ

2
, while the

minimum is when φ1 = π
4

+ mπ
2

and φ2 = 2π − π
4
− mπ

2
, with m an integer. For

the state |cc〉 the maxima and minima are approximately in the same condition of the
state |bb〉, just slight more asymmetric. Figure 3.4 shows the probability |βbc|2, again
this probability is non negligible only on the diagonal, for the same reason. But more
interesting is that now, along the diagonal, the maxima are when φ1 = π

4
+ mπ

2
and

φ2 = 2π − π
4
−mπ

2
and the minima when φ1 = mπ

2
and φ2 = 2π −mπ

2
. Therefore a

minimum in the probability of |bb〉 or |cc〉 is a maximum for |bc〉 and vice versa. This
fact can be exploited to manipulate the output state of the photons simply by acting
on φ1 and φ2. Indeed the state of the generated photons can be written as

|ψgen〉 =

{
βbc(φ1, φ2) |bc〉 φ1 = π

4
+mπ

2
φ2 = 2π − π

4
−mπ

2

βbb(φ1, φ2) |bb〉+ βcc(φ1, φ2) |cc〉 φ1 = mπ
2

φ2 = 2π −mπ
2

(3.47)
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(a) (b)

Figure 3.3: Simulated probabilities (a) |βbb|2 and (b) |βcc|2 for the state |bb〉 and |cc〉
as a function of phases φ1 and φ2, not yet normalized. Credits to: Massimo Borghi

Figure 3.4: Simulated probability |βbc|2 for the state |bc〉 as a function of phases φ1 and
φ2, not yet normalized. Credits to: Massimo Borghi
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Chapter 4

Conclusion and further
developments

In this thesis I showed how entangled photon pairs are created inside a structure com-
posed by two coupled resonators. Spontaneous Four Wave Mixing is used to generate
photon pairs inside rings, I described the process from a quantum mechanical point
of view and derived the output states of the system. Furthermore I showed how the
output states change introducing two phases in the system. The final probabilities are
a function of such phases and, as we analyzed in the last section, it is possible to decide
where the photons exit. Exploiting this feature, there are two possibilities, by choosing
the right phases a photon pair can exit either in B and with a similar probability in
C, or the photon pair is splitted and one photon exit in B, while the other in C. This
result has been obtained by computing the probabilities, but the calculation can go on,
it is possibile to derive the power of the generated photons and also the rate. But the
next important step is the experimental verification which is being performed by the
nanoscience group of the University of Trento.
In this conclusion I want to dwell on entanglement, which in this work is almost not
present. The generated photon pairs are energy and time entangled; the fact that the
energy is entangled can be seen from equation (2.6) which express the conservation of
energy of the generated photon. The sum of the frequencies of the generated photons
is fixed, so if a photon has a determined frequency, the frequency of the other one is
determined. The frequency is linked to energy by the Planck’s constant E = ~ω, so
speaking about photon frequency is to speak about photon energy. The time entan-
glement is trickier to see from a theoretical point of view since it involves Feynman
diagrams where the interaction of photons can be sketched. Rather it is simplier to
perform coincidence measurements. From the photodetection it can be seen that there
is zero delay between the photons’ arrival, this means that the photons are emitted at
the same time.
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